
Webnucleo Technical Report: Screening and

Reverse Rate Correction Factors in libnucnet

Bradley S. Meyer

June 5, 2016

This technical report describes how to provide routines to include screening
and reverse ratio correction factors for rate calculations in libnucnet.

1 Screening

The dense electron gas present in plasmas can enhance the rate for a thermonu-
clear reaction because the negative charge of the electrons screens the positive
charges of the interacting nuclei. This makes the penetration of the Coulomb
barrier between the two positively charged reactants easier and thus increases
their interaction rate. Expressions for screening exist in the literature and have
been widely employed in nucleosynthesis calculations (e.g., [1]). The question
addressed here is how to implement screening in libnucnet.

One way to do this is to compute the forward and reverse nuclear reaction
rates for a zone using the libnucnet API routine Libnucnet Zone computeRates().
Once the rates are computed, one can then iterate over the reactions and apply
the screening function to each reaction. Once the screening factor is computed,
it is then applied to the rates for the reaction by using the API routine Libnuc-
net Zone updateRatesForReaction().

The libnucnet API allows for a more systematic treatment. From ver-
sions 0.2 to 0.25 of libnucnet, the user supplied a routine, called a Libnuc-
net Net screening function in libnucnet. This then was called from an API
routine Libnucnet Net computeScreeningFactorForReaction. This then re-
quired a separate application function. As of version 0.26, this has all been
simplified. To apply screening to rates in a particular zone, the user simply
writes a Libnucnet Zone screeningFunction with prototype

void
Libnucnet__Zone__screeningFunction(
Libnucnet__Zone * self,
Libnucnet__Reaction * p_reaction,
double d_t9,
double d_rho,
double d_ye,

1



double * p_forward_rate,
double * p_reverse_rate

);

The routine may have any appropriate name. The necessary inputs are:

• self: A pointer to the Libnucnet Zone.

• p reaction: A pointer to a Libnucnet Reaction to which the screening
is to be applied.

• d t9: The temperature T9, that is, the temperature in 109K at which to
compute the screening factor.

• d rho: The density ρ in g/cc at which to compute the screening factor.

• d ye: The electron-to-baryon ratio Ye at which to compute the screening
factor.

• p forward rate: A pointer to the current value of the forward rate for
the reaction.

• p reverse rate: A pointer to the current value of the reverse rate for the
reaction.

Given these inputs, the user’s routine should compute the screening factor
for the reaction and apply it as appropriate to the forward and reverse rates.

With a properly defined zone screening function, the user then sets it and any
applicable extra data with the API routine Libnucnet Zone setScreeningFunction(),
which has the prototype

void
Libnucnet__Zone__setScreeningFunction(
Libnucnet__Zone *self,
Libnucnet__Zone__screeningFunction my_zone_screening_function,
void *p_user_data

);

The inputs to this routine are

• self: A pointer to the Libnucnet Zone under consideration.

• my zone screening function: The name of the user’s screening func-
tion. The user should cast this as a Libnucnet Zone screeningFunction.

• p my data: The pointer to the user’s data structure. If there are no
extra data to pass to the user’s function, this should be NULL.

2



Once the screening function and data have been set for a zone, that function
will be called for all reactions when Libnucnet Zone computeRates() is called.
To retrieve the data for the screening function set for the zone, one calls the API
routine Libnucnet Zone getScreeningData. To clear the screening function,
the user simply calls the API routine Libnucnet Zone clearScreeningFunction().

The example screening function in the libnucnet distribution computes the
screening factor for reactions with more than two reactants in the traditional
manner of viewing the full reaction as a sequence of intermediate reactions.
For example, for the three-body reaction a + b + c, libnucnet uses the user’s
screening routine to compute Fscreen(a, b), the screening factor for the reaction
a + b. It then uses the user’s screening routine to compute Fscreen(a + b, c),
the screening factor for the reaction (a + b) + c. The total screening factor
applied to the reaction a+ b+ c is then Fscreen(a, b)×Fscreen(a+ b, c). For four
reactants, that is, the reaction a + b + c + d, the total screening factor would
be Fscreen(a, b)× Fscreen(a+ b, c)× Fscreen(a+ b+ c, d). Libnucnet loops over
reactants, so this generalizes to any number of reactants. As of version 0.26, the
order in which the screening for the reactants is applied is simply the order in
which the reactants are stored for the reaction. The user can certainly change
this in his or her screening function.

In versions 0.24 and 0.25, libnucnet applied either the forward or reverse
screening factor to both the forward and reverse rates, depending on a restricted
set of rules. As of version 0.26, since the user has full freedom in defining how
the screening factors are applied, a number of routines related to the version
0.24 and 0.25 treatments have been removed from the API. Nevertheless, the
example screening code retains some of that treatmenet. In particular, it applies
the greater of the forward or reverse screening factors to both the forward and
reverse rates. Again, the user may change this in his or her screening function.

By multiplying both forward and reverse rates for a reaction by the computed
screening factor, the default network will tend to evolve at constant temperature
and density and in the absence of weak interaction rates to the same nuclear
statistical equilibrium (NSE) that it would have without screening applied. This
may not be consistent with the physical nature of the screening. In particular,
the presence of the electrons may alter the binding energy of the nuclei and
hence the resulting NSE. If the user wishes to correct the reverse reaction rate
so that the NSE is consistent with the screening due to the electrons, he or she
must apply the reverse ratio correction factor function as described in the next
section.

2 Reverse Ratio Correction Factor

As discussed above, libnucnet example screening applies the result of the user’s
screening function to both the forward and reverse rates for a reaction. This
means that the network abundances will tend to evolve to the same NSE that
they would without application of the screening (albeit at a different overall
rate). If this is not consistent with the user’s screening model, he or she must

3



apply a correction factor to the reverse ratio. This correction factor is in fact
derived from the factor by which one would multiply the NSE abundance for a
species to account for the effect of the electrons (or another effect).

We begin by explaining what is meant by a libnucnet NSE correction factor.
The condition for NSE is

µi = Ziµp +Niµn, (1)

where µi is the chemical potential for species i and µn, µp are the chemical
potentials for neutrons and protons, respectively, and Zi and Ni are the atomic
number and neutron number for species i, respectively. The libnucnet default
is to consider all nucleons and nuclei as ideal, classical Maxwell-Boltzmann
particles; thus,

µi = mic
2 + kT ln

(
Yi
YQi

)
≡ mic

2 + µ′i, (2)

where the quantum abundance YQi is defined as

YQi ≡
Gi
ρNA

(
mikT

2πh̄2

)3/2

. (3)

In Eq. (2) Yi is the abundance of i per nucleon and mic
2 is the rest mass energy

of species i. In Eq. (3) NA is Avogadro’s number, Gi is i’s nuclear partition
function, and k is Boltzmann’s constant. It is useful to consider that YQi is
the abundance per nucleon of species i if there were one such particle in a cube
with side one thermal de Broglie wavelength in length. The NSE abundance of
species i is then

Yi,NSE = YQi exp
{
Zi
µ′p
kT

+Ni
µ′n
kT

+
Bi
kT

}
, (4)

where Bi is the nuclear binding energy of species i:

Bi = Zimpc
2 +Nimnc

2 −mic
2. (5)

As of version 0.7 of libnucnet, the quantities YQi and Bi can be computed
from the API routines Libnucnet Species computeQuantumAbundance() and
Libnucnet Nuc computeSpeciesBindingEnergy(), respectively.

The libnucnet NSE correction factor is a factor fi,corr that gets added to the
exponent in Eq. (4) to correct for deviations away from the above treatment.
In particular, suppose in the correct treatment, µ′i 6= kT ln (Yi/YQi). We may
then write

Yi = YQi exp
{
µ′i
kT

+
[
ln

(
Yi
YQi

)
− µ′i
kT

]}
. (6)

If we now apply the NSE condition in Eq. (1), we find

Y ′i,NSE = YQi exp
{
Zi
µ′p
kT

+Ni
µ′n
kT

+
Bi
kT

+
[
ln

(
Yi
YQi

)
− µ′i
kT

]}
, (7)

4



where Y ′i,NSE indicates the nuclear statistical equilibrium abundance in the now
correct treatment. We thus see that

Y ′i,NSE = Yi,NSE exp
{

ln
(
Yi
YQi

)
− µ′i
kT

}
≡ Yi,NSE × efi,corr , , (8)

where Yi,NSE refers to the equilibrium abundance computed from the neutron
and proton chemical potentials and the species binding energy.

An example will illustrate how this works. Suppose each nuclear species
has a constant potential energy Ui, perhaps due to a uniform background of
electrons. The abundance of the species is then given by

Yi = YQi exp
{
µ′i
kT
− Ui
kT

}
. (9)

From this, it is clear that

fi,corr = − Ui
kT

. (10)

To accommodate an NSE correction factor, the user first writes a Libnuc-
net Species nseCorrectionFactorFunction() with any appropriate name (in the
case below my correction function) which has the prototype

double
my_correction_function(
Libnucnet__Species *self,
double d_t9,
double d_rho,
double d_ye,
void *p_my_data

);

The inputs are

• self: A pointer to a Libnucnet Species.

• d t9: The temperature T9, that is, the temperature in 109 K at which to
compute the correction factor.

• d rho: The density ρ in g/cc at which to compute the correction factor.

• d ye: The electron-to-baryon ratio Ye at which to compute the correction
factor.

• p my data: A pointer to a user-defined data structure containing any
extra data to be passed into the user’s routine. This should be NULL if
no extra data are required.

5



This function has the Species namespace because it generally requires only
nuclear data for a particular species, along with the temperature, density, and
Ye. The output from this routine is a double that contains the natural logarithm
of the factor by which one multiplies the NSE abundance of a species computed
from the proton and neutron chemical potentials and the species binding energy
to account for the correction. Thus, in the case of electron screening, if the
abundance of species i in NSE in the absence of the electron effects is Yi,NSE ,
the user’s Libnucnet Species nseCorrectionFactorFunction should return the
quantity fi,corr such that the NSE abundance with the effect of the electrons
included is exp(fi,corr)× Yi,NSE .

Once the species NSE correction factor function is defined, the user may
compute the reverse ratio correction factor for a reaction by calling Libnuc-
net Net computeReverseRatioCorrectionFactorForReaction() directly. The pro-
totype for this reaction is:

double
Libnucnet__Net__computeReverseRatioCorrectionFactorForReaction(
Libnucnet__Net *self,
Libnucnet__Reaction *p_reaction,
double d_t9,
double d_rho,
double d_ye,
Libnucnet__Species__nseCorrectionFactorFunction
my_correction_function,

void *p_my_data
);

The inputs are

• self: A pointer to a Libnucnet Net structure, which contains the nuclear
network (nuclear + reaction) data.

• p reaction: A pointer to the Libnucnet Reaction structure for the reac-
tion whose reverse ratio correction factor is desired.

• d t9: The temperature T9, that is, the temperature in 109 K at which to
compute the correction factor.

• d rho: The density ρ in g/cc at which to compute the correction factor.

• d ye: The electron-to-baryon ratio Ye at which to compute the correction
factor.

• my correction function: The name of the user’s correction factor func-
tion. The user should cast this as a Libnucnet Species nseCorrectionFactorFunction.

• p my data: A pointer to a user-defined data structure containing any
extra data to be passed into the user’s routine. This should be NULL if
no extra data are required.

6



The routine loops over all reactants and products in the reaction and com-
putes their NSE correction factors. From these, the routine then returns the
double by which the reverse reaction rate should be multiplied to account for
the electron screening effects.

The user may set a species correction factor function for a zone by calling
Libnucnet Zone setNseCorrectionFactorFunction(), which has the prototype

void
Libnucnet__Zone__setNseCorrectionFactorFunction(
Libnucnet__Zone *self,
Libnucnet__Species__nseCorrectionFactorFunction
my_correction_function,

void *p_my_data
);

The inputs to this routine are

• self: A pointer to the Libnucnet Zone under consideration.

• my correction function: The name of the user’s correction factor func-
tion. The user should cast this as a Libnucnet Species nseCorrectionFactorFunction.

• p my data: The pointer to the user’s data structure. If there are no
extra data to pass to the user’s function, this should be NULL.

As of version 0.26, once the species NSE correction factor function is set for a
zone, a user can retrieve it with the API routine Libnucnet Zone getNseCorrectionFactorFunction().
One can also retrieve the associated data with Libnucnet Zone getNseCorrectionFactorData().

In versions 0.24 and 0.25, libnucnet applied the reverse ratio correction factor
to reactions separately from the screening. As of version 0.26, application of
the reverse ratio correction factor to reactions is entirely up to the user. In
the example screening with libnucnet 0.26 and later, the reverse ratio correction
factor is applied within the screening function. Users should consult the example
codes to see how that works.

3 Corrections and NSE

In order to be clear about the procedure for applying the screening and reverse
ratio correction factors, we provide an example. Consider the reaction

12C + α→16 O + γ. (11)

The contribution of this reaction to dY (12C)/dt, the time rate of change of the
abundance of 12C, is

−NA〈σv〉ρY (12C)Y (α) + λγY (16O), (12)

where NA is Avogadro’s number, 〈σv〉 is the thermally-averaged interaction
cross section for a reaction between a 12C nucleus and an α particle, ρ is the

7



mass density, and λγ is the rate per second for an 16O nucleus to disintegrate
back into a 12C and an α.

If the system attains NSE, then detailed balance ensures that forward and
reverse reaction flows come into balance. Thus,

NA〈σv〉ρYNSE(12C)YNSE(α) = λγYNSE(16O), (13)

This means that the “reverse ratio” R relating the forward and reverse reaction
rates is

R =
λγ

NA〈σv〉
=
ρYNSE(12C)YNSE(α)

YNSE(16O)
. (14)

In this particular case, we can apply Eq. (4) to find

R = ρ
YQ,12CYQ,α
YQ,16O

exp
{
B12C

kT
+
Bα
kT
− B16O

kT

}
. (15)

If we compute reverse rates from forward rates using reverse ratios computed
from detailed balance in this way, our network will tend to evolve at constant
temperature and density and in the absence of weak interaction rates to the
expected NSE.

We now compute screening. Suppose the screening factor for the forward
reaction in Eq. (11) is Fscreen(α, γ) and for the reverse reaction is Fscreen(γ, α).
If we apply these screening factors, we find

R′ =
Fscreen(γ, α)λγ

Fscreen(α, γ)NA〈σv〉
=
Fscreen(γ, α)
Fscreen(α, γ)

×R. (16)

Since libnucnet computes a reverse rate from a forward rate using detailed
balance, the effect of screening on the reverse rate is obtained from consideration
of the NSE achieved. As mentioned above, the user-supplied NSE correction
factor function computes the factor by which Yi,NSE , the NSE abundance of
species i, changes due to the screening electrons; thus, if the user’s routine
returns the correction factor fi,corr for species i, then

Y ′i,NSE = efi,corr × Yi,NSE , (17)

where the prime indicates correction for the screening electrons. Because of
detailed balance, we thus know

R′ =
ρY ′NSE(12C)Y ′NSE(α)

Y ′NSE(16O)
= ef12C,corr+fα,corr−f16O,corr× ρYNSE(12C)YNSE(α)

YNSE(16O)
(18)

Comparison of Eqs. (14), (16), and (18) shows that

Fscreen(γ, α) = ef12C,corr+fα,corr−f16O,corr × Fscreen(α, γ). (19)

We may write
R′ = Fcorr ×R. (20)

8



Fcorr is the reverse ratio correction factor, the quantity returned by

Libnucnet Net computeReverseRatioCorrectionFactorForReaction()

For the reaction in Eq. (11), it is clear that

Fcorr = ef12C,corr+fα,corr−f16O,corr . (21)

In general,
Fscreen(reverse) = Fcorr × Fscreen(forward). (22)

Libnucnet applies the user’s screening function, that is, his or her

Libnucnet screening function()

to compute the screening factor for the forward rate and then the user’s

Libnucnet Species nseCorrectionFactorFunction()

on the various reactants to compute the reverse ratio correction factor and
the screening factor for the reverse reaction. With this treatment, the system
will evolve in the absence of weak reactions and at constant temperature and
density to the NSE appropriate to the user’s NSE correction factor function
[that is, once the abundances reach NSE, they will be given by Eq. (17)]. Note
that if the user does not supply an NSE correction factor function, the forward
and reverse ratios have the same screening factor. This means the abundances
will achieve the same NSE they would have in the absence of screening although
the time to reach that equilibrium would typically be shorter.

4 Turning off Reverse Rates

Some users may find it desirable to turn off computation of reverse rates by
detailed balance. For example, a user may wish instead to supply his or her
own forward and reverse rates. While this can be done by updating the re-
verse rate to zero after computation of all the rates for a zone, this is an
inefficient procedure. As of version 0.18, it is possible to turn off automatic
computation of reverse rates by detailed balance for a zone with the API rou-
tine Libnucnet Zone toggleReverseRateDetailedBalance(). The user supplies
a pointer to a libnucnet zone and sets the switch to either the string “on” or
“off”. If the user sets the switch to “off”, the libnucnet API routine Libnuc-
net Zone computeRates() will compute only the forward rate for every valid
reaction, and the reverse rate will be zero. As of version 0.26, if the user does not
compute reverse reactions from detailed balance, any zone screening function
should apply the screening factor only to the forward reaction.

A user who toggles off computation of reverse rates by detailed balance must
be careful to supply both the forward and reverse rates for a reaction separately.

9



For example, if the computation of reverse rates by detailed balance is on, it is
sufficient to supply the rate data for the reaction 12C +4 He→16 O + γ. libnuc-
net will automatically compute the rates for the forward reaction 12C +4 He→16 O + γ
and the reverse reaction 16O + γ →12 C +4 He for a zone when Libnucnet Zone computeRates()
is called. If, however, the computation of reverse rates by detailed balance is off,
it is necessary to supply rate data for both the reaction 12C +4 He→16 O + γ
and the reaction 16O + γ →12 C +4 He separately. The routine Libnucnet Zone computeRates()
will compute the rates for both of these reactions as forward rates.

References

[1] R. K. Wallace, S. E. Woosley, and T. A. Weaver, The thermonuclear
model for x-ray transients, Astrophys. J, 258 (1982), pp. 696–715.

10


	Screening
	Reverse Ratio Correction Factor
	Corrections and NSE
	Turning off Reverse Rates

