
Webnucleo Technical Report: Views in libnucnet

Bradley S. Meyer

April 2, 2013

This technical report describes how to work with views in libnucnet.

1 Views

In libnucnet, a Libnucnet Nuc structure stores data for a collection of nuclides
while a Libnucnet Reac structure stores data for a collection of reactions. A
network, which is stored as a Libnucnet Net structure, is then a combination
of the nuclide collection and the reaction collection. Valid reactions in the
network are nucleon-number-conserving, lepton-number-conserving, and charge-
conserving reactions in the Libnucnet Reac structure among nuclides stored in
the network’s Libnucnet Nuc structure. A reaction in the network is invalid if
it does not conserve nucleon number, lepton number, or charge, or if any of the
reactants or products are not included among the network’s nuclide collection.

Libnucnet Nuc and Libnucnet Reac structures store a considerable amount
of information about their nuclides and reactions. In many cases it is desirable to
have a subset of these nuclides or reactions. The libnucnet API provides the rou-
tines Libnucnet Nuc extractSubset() and Libnucnet Reac extractSubset(),
which, respectively, create new nuclide and reaction collections from the orig-
inal collections through the use of XPath expressions. Importantly, these new
collections ”own” the nuclide or reaction data in the sense that the extract-
Subset() routines make copies of those data from the original collections. Any
modification of the data in the extracted subset does not affect the data in the
original collection.

While these new collections have their uses, it is often preferable to have
a “view” of the collection. A view is a subset of collection that does not own
its own data. Rather, the data in the view are simply pointers to the data in
the original collection. An advantage of a view over an extracted subset, then,
is that it requires a considerably smaller amount of memory than the original
collection does. Also, since the view does not own its data, modifying the data
for a nuclide or reaction in a view modifies the nuclide’s or reaction’s data in
the original collection. This means, for example, that one can modify the data
in a nuclide collection for neon isotopes by getting a view of the collection that
only includes the neon isotopes and iterating over the species in the view and

1

modifying their data. This automatically modifies the data for the neon isotopes
in the original collection.

The possible views a user can create are a Libnucnet NucView, a view of a
nuclide collection, a Libnucnet ReacView, a view of a reaction collection, and
a Libnucnet NetView, a view of a network. It is important to note that the
only reactions included in a Libnucnet NetView are ones that are valid for that
view.

2 Libnucnet NucView

A Libnucnet NucView is a view of a nuclide collection. It is created with
the Libnucnet NucView new() routine that takes as arguments the original
Libnucnet Nuc pointer and an XPath expression to select the species to include
from the original collection in the view. The view collection may be accessed
via the API routine Libnucnet NucView getNuc(), and the pointer returned
from this routine may be passed into any routine that takes a Libnucnet Nuc
structure. The user then frees the view with Libnucnet Nuc free().

For example, to count the number of neon isotopes in an existing nuclide
collection p nuc, one could create a view of neon isotopes and get the number
of species in it:

p_view = Libnucnet__NucView__new(p_nuc, "[a = 10]");

printf(
"The number of neon isotopes is %lu.\n",
Libnucnet__Nuc__getNumberOfSpecies(
Libnucnet__NucView__getNuc(p_view)

)
);

Libnucnet__NucView__free(p_view);

It is important to note that p nuc and all its data still exist after these operations
since p view never owned p nuc’s data.

3 Libnucnet ReacView

A Libnucnet ReacView structure is a view of a reaction collection. It is exactly
analogous to a Libnucnet NucView structure in that it is created with Libnuc-
net ReacView new(), which takes as arguments an existing reaction collection
and an XPath expression to select the reactions to include. The view collection
is accessed with Libnucnet ReacView getReac(), and the view is freed with
Libnucnet ReacView free().

2

4 Libnucnet NetView

A Libnucnet NetView structure is a view of a Libnucnet Net structure con-
taining a subset of species of the original structure and valid reactions among
the view’s species. It is created with Libnucnet NetView new(), which takes
the original network and two XPath expressions as arguments. The first argu-
ment is the XPath expression that selects the nuclides from the original network
to include in the view. The second XPath expression selects the reactions to in-
clude in the view. The routine returns a view containing a subset of the species
in the original network and the valid reactions among those species that satisfy
the reaction XPath constraint.

After a view has been created, it is possible to add or remove reactions from
the view with Libnucnet NetView addReaction() or Libnucnet NetView removeReaction().
It is worth noting that since adding a reaction requires a check that the reac-
tion is valid for the view, this operation is slower than removing the reaction,
which simply deletes the reaction pointer from the underlying hash. A net-
work view can be accessed with Libnucnet NetView getNet(). A user can
copy a network view with Libnucnet NetView copy(), which returns a new
network view that is a copy of the input one. The user frees a view with Lib-
nucnet NetView free().

While network views can be used on their own, it is also possible to store
them in Libnucnet Zones. This is convenient because the user can simply
lookup a view rather than create it, an operation that requires numerous checks
on reaction validity. An existing network view can be added to an existing zone
with the command Libnucnet Zone updateNetView(), which adds the view to
the zone if it did not previously exist or replaces the existing view with the new
one. This routine takes as arguments the zone, three labels for the view, and
the view. The user subsequently looks up the view from the zone with the three
labels using Libnucnet Zone getNet().

It is frequently the case that the logical choices for two of the labels for a
view in a zone are the XPath expressions that created the view, especially if no
reactions have been added to or removed from the view since it was created. In
this case, the third label can simply be NULL. The labels, however, need not be
XPath expressions. For example, the network evolution (change of abundances
with time) is computed from an evolution network view, which has labels (EVO-
LUTION NETWORK, NULL, NULL). To change the evolution network, then,
the user would create a view and then update the evolution view in p zone, the
zone of interest. To limit the evolution network to (n, γ) reactions on nuclei
with Z ≤ 50, the user would write:

p_view =
Libnucnet__NetView__new(
"[z <= 50]",
"[reactant = ’n’ and product = ’gamma’]"

);

3

Libnucnet__Zone__updateNetView(
p_zone,
EVOLUTION_NETWORK,
NULL,
NULL,
p_view

);

libnucnet routines would then use this network to evolve abundances until the
evolution view was updated again.

Because a network view is created from a parent network, it is conceivable
that the parent network might have changed since the view was generated. For
example, suppose a user generates Libnucnet NetView * p view from Libnuc-
net Net * p net. Now suppose the user adds a new species to the nuclide
collection in p net. p view will not include that species. At this point the user
will want to delete p view and generate a new view.

A user can check whether the parent network of a view has been updated
since the view was generated with the API routine Libnucnet NetView wasNetUpdated().
This routine returns 1 (true) if the parent network has been updated since the
view was generated or 0 (false) if not. Checking for an update will allow a user
to decide whether to regenerate a view or not.

A user can iterate over the network views stored in a zone with Libnuc-
net Zone iterateNetViews() and apply a user defined Libnucnet NetView iterateFunction
to them. To do so, the user writes a routine with prototype

int
my_net_view_iterator(
Libnucnet__NetView * p_view,
const char * s_label1,
const char * s_label2,
const char * s_label3,
void * p_data

);

In this prototype, p data is a pointer to a user-defined data structure carrying
extra data for the routine. The routine must return 1 (true) for iteration to
continue or 0 (false) for iteration to stop.

The user then iterates over the network views in p zone and applies my net view iterator
using p data with

Libnucnet__Zone__iterateNetViews(
p_zone,
s_1,
s_2,
s_3,
(Libnucnet__NetView__iterateFunction) my_net_view_iterator,

4

p_data
);

This iterates over all network views in p zone that have labels that match s 1,
s 2, and s 3 and applies my net view iterator to each view. If s 1, s 2, or s 3 is
NULL, any view label is a match; thus, supplying NULL for s 1, s 2, and s 3
will iterate over all network views in p zone.

Once a network view is added to a zone with Libnucnet Zone updateNetView(),
the zone owns the view. This means that the memory for the view will be freed
when the zone is freed. If a network view has not been added to a zone, it is
the user’s responsibility to free the memory with Libnucnet NetView free().

As of version 0.19, it is possible to copy all network views from one zone to
another and to clear all network views from a zone without deleting the zone.
Copying network views from one zone to another is done with the libnucnet
API routine Libnucnet Zone copy net views(). This routine allows a user to
avoid having to create a new network view in the destination zone, a time
consuming process since all reactions must be checked for validity when the
new view is created. Of course the underlying network for the source zone and
the destination zone must be the same. libnucnet will invoke error handling if
the underlying networks are not the same.

Clearing all network views from a zone is done with the libnucnet API rou-
tine Libnucnet Zone clearNetViews(). A user might wish to clear the network
views from a zone, for example, when separate zones contain the results of
separate nucleosynthesis calculations. If the calculation for a given zone is com-
pleted, the network views in that zone may no longer be needed. If the user
wants to retain the zone, the memory for the views will remain allocated unless
the user clears the network view from the zone. Doing so will free up memory
for the nucleosynthesis calculations in subsequent zones.

5

	Views
	Libnucnet__NucView
	Libnucnet__ReacView
	Libnucnet__NetView

