
Webnucleo Technical Report: User-Supplied Rate

Functions to libnucnet

Bradley S. Meyer

May 28, 2011

This technical report describes how to supply rate functions to libnucnet.

1 User-Supplied Rate Functions

The standard functions in libnucnet for calculating reaction rates are single
rates (numbers independent of the temperature, density, or any other exter-
nal parameter), rate tables (tables giving the rate vs. temperature, which are
interpolated), or non-smoker fit functions. These standard rate functions are
described in the libnucnet input technical report.

In some cases users may wish to provide their own rate functions that would
be applied during reaction rate calculations. As of version 0.5, this is possi-
ble. To do so, a user writes a Libnucnet Reaction userRateFunction with the
prototype

double
my_rate_function(
Libnucnet__Reaction *p_reaction,
double d_t9,
void *p_user_data

);

In this function, d t9 is the temperature in 109 K and p user data is a pointer
to a user-supplied data structure. The user’s routine then returns the rate
for the reaction. The user must supply a rate function for each different rate
parameterization considered.

2 Setting the Rate Function for a Reaction

Once user rate functions are defined, they should be registered with the reaction
collection. To do so, the user calls Libnucnet Reac registerRateFunction().
For example, with the my rate function above, one would call

1



Libnucnet__Reac__registerRateFunction(
p_my_reactions,
"my rate function",
(Libnucnet__Reaction__userRateFunction) my_rate_function

);

to register the function with the reaction collection Libnucnet Reac *p my reactions.
In this example, the string “my rate function” is a key that allows libnucnet to
retrieve and apply the appropriate function to a reaction.

A reaction needs to have an associated function key. If reaction data are
read in from XML, this is done automatically as the XML is parsed via the key
attribute to the user rate tag. If a reaction is added separately, however, the
user must set the key directly. The user does this by calling the API routine
Libnucnet Reaction setUserRateFunctionKey with the prototype

void
Libnucnet__Reaction__setUserRateFunctionKey(
Libnucnet__Reaction *p_reaction,
const char *s_function_key

);

In this function, s function key is function key to a registered user rate function.

3 Rate Data

If a reaction has a user-supplied rate function, the user can set the data for it
by the Libnucnet Reaction updateUserRateFunctionProperty() API routine.
Such data are typically reaction-rate fit parameters. They are properties, which
are strings identified by a name and up to two optional tags. The user may
do this directly or may set the data in the input xml file, as described in the
Webnucleo technical report on input xml to libnucnet.

Once the data for a reaction are set, they may be retrieved via the Libnuc-
net Reaction getUserRateFunctionProperty() routine. Here the user supplies
the reaction pointer and the strings for the name of the property and the tags,
if present. The property is returned as a string. The properties may also be ac-
cessed by the API routine Libnucnet Reaction iterateUserRateFunctionProperty().
Here the user supplies a function with the prototype

void
my_iterate_function(
const char *s_name,
const char *s_tag1,
const char *s_tag2,
const char *s_value,
void *p_data

);

2



Once this function is defined, the user then iterates over the properties for the
rate function for the reaction by calling, for example,

Libnucnet__Reaction__iterateUserRateFunctionProperties(
p_reaction,
s_name,
s_tag1,
s_tag2,
(Libnucnet__Reaction__user_rate_property_iterate_function)
my_iterate_function,

p_data
);

The iteration is over all properties that match s name, s tag1, and s tag2. If
any of these is NULL, the comparison is a match; thus, if all three are NULL,
the routine will iterate over all properties of the rate function for the reaction.

Finally, the user may remove a property for a user rate function by calling
Libnucnet Reaction removeUserRateFunctionProperty().

4 Extra Data

A reaction rate is typically computed from fit data and from data characterizing
the physical conditions present at any point in the calculation. The former are
what we have called “rate data”. These are data that apply to a particular
reaction. The latter are extra, or “user”, data that might correspond to the
density at a particular point in the calculation. These user data are those
supplied to the user’s rate function, that is, the data pointed to by p user data,
as described in §1.

The extra data are typically associated with time-dependent quantities,
which, in turn, are associated with zones. As of version 0.9, then, to set these
data, the user calls Libnucnet Zone updateDataForUserRateFunction(), which
has the syntax:

void
Libnucnet__Zone__updateDataForUserRateFunction(
Libnucnet__Zone *self,
const char *s_function_key,
void *p_data

);

For example, to pass the density (stored as d density) to a user rate function
registered with the key “my rate function” in the zone p zone, one would
call

Libnucnet__Zone__updateDataForUserRateFunction(
p_zone,
"my rate function",

3



&d_density
);

Once this is done, any reaction rate computed from the function with key “my
rate function” would be computed in p zone from the rate data for the particular
reaction and the current temperature T9 and the density d density set in the
function above.

The current data in a zone for a user rate function can be retrieved with
the API function Libnucnet Zone getDataForUserRateFunction with the pro-
totype

Libnucnet__Zone__getDataForUserRateFunction(
Libnucnet__Zone * p_zone,
const char * s_function_key

);

This retrieves the current extra data for the rate function identified by the rate
function key s function key. Examples in the libnucnet distribution demonstrate
how to apply extra data to a user function.

4


	User-Supplied Rate Functions
	Setting the Rate Function for a Reaction
	Rate Data
	Extra Data

