
Webnucleo Technical Report: libnucnet Iterators

Bradley S. Meyer

May 4, 2010

This technical report describes how to iterate over species, reactions, or zones
with libnucnet and how to apply functions during the iterations.

1 Iterations

Species, reactions, and zones are stored in hashes and lists in libnucnet. As
of version 0.2 of libnucnet, a user loops over them by calling an iterator and
supplying an iterate function to apply during the iteration. As of version 0.3, it
is possible to iterate over reaction elements (reactants and products) and over
optional properties assigned to a zone.

2 Iterating over Nuclear Species

To iterate over the species in a collection of species stored in a Libnucnet Nuc
structure, the user first writes a routine to apply to each species during the
iteration. The prototype is

int
my_iterate_function(
Libnucnet__Species *p_species,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p species: A pointer to a species in the collection.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
The user then calls the function to apply with the Libnucnet Nuc API

routine Libnucnet Nuc iterateSpecies() routine, which has the prototype

1

void
Libnucnet__Nuc__iterateSpecies(
Libnucnet__Nuc *self,
Libnucnet__Species__iterateFunction pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet Nuc structure, which contains the collec-
tion of nuclear species.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Species iterateFunction.

• p my data: A pointer to a user-define data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

For example, suppose we want to count the number of species with Z ≥ 10
in the Libnucnet Nuc structure pointed to by p my nuclei and print out their
name. We first write an iterate function, which we will call my counter and printer:

int
my_counter_and_printer(
Libnucnet__Species *p_species,
int *p_count

)
{

if(!p_species || !p_count)
{
fprintf(stderr, "Problem with species or user data.\n");
return 0;

}

if(Libnucnet__Species__getZ(p_species) >= 10)
{
printf(
"Species number %d is %s\n",
*p_count++,
Libnucnet__Species__getName(p_species)

);
}

return 1;

2

}

Then to apply this routine, the user calls it from his or her program:

i_count = 0;
Libnucnet__Nuc__iterateSpecies(
p_my_nuclei,
(Libnucnet__Species__iterateFunction) my_counter_and_printer,
&i_count

);

In this example, the code initializes i count to zero and then iterates over
the species included in p my nuclei and applies my counter and printer to each
species. Note that the species are iterated in the order in which they were stored
[or were previously sorted, if the user previously called Libnucnet Nuc sortSpecies()].
Examples in the libnucnet distribution provide further details and examples on
how to write, apply, compile, and link iterators.

3 Iterating over Reactions

To iterate over reactions in a reaction collection, the user supplies a routine to
apply to a reaction iteration. The prototype is

int
my_reaction_iterate_function(
Libnucnet__Reaction *p_reaction,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p reaction: A pointer to a reaction.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
The user then calls the function to apply with the Libnucnet Reac API

routine Libnucnet Reac iterateReactions() routine, which has the prototype

void
Libnucnet__Reac__iterateReactions(
Libnucnet__Reac *self,
Libnucnet__Reaction__iterateFunction pf_function,
void *p_user_data

);

3

The necessary inputs are:

• self: A pointer to a Libnucnet Reac structure, which contains the collec-
tion of reactions.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Reaction iterateFunction.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

Again, examples in the libnucnet distribution provide further demonstra-
tion of the user of reaction iterators. As of version 0.4, reactions are iter-
ated in the order in which they are stored internally in the Libnucnet Reac
structure. The user does not define this. To iterate in a different order, the
user supplies a Libnucnet Reaction compare function and sets it with Lib-
nucnet Reac setReactionCompareFunction(). To restore the default, the user
should call Libnucnet Reac clearReactionCompareFunction(). If the number
of reactions is large, the iteration in the default order can be much faster than
one that requires a sorting. For this reason, the default should be used where
possible.

4 Iterating over Reaction Elements

Reaction elements are reactants or products in a reaction. As of version 0.3, it
is possible to iterate over them. To do so, the user supplies a routine to apply
to a reaction element iteration. The prototype is

int
my_reaction_element_iterate_function(
Libnucnet__Reaction__Element *p_element,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p element: A pointer to a reaction element (a reactant or product).

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
The user then calls the function to apply with the Libnucnet Reac API rou-

tine Libnucnet Reaction iterateReactants() or Libnucnet Reaction iterateProducts()
routine, which have the prototypes

4

void
Libnucnet__Reaction__iterateReactants(
Libnucnet__Reaction *self,
Libnucnet__Reaction__Element__iterateFunction pf_function,
void *p_user_data

);

and

void
Libnucnet__Reaction__iterateProducts(
Libnucnet__Reaction *self,
Libnucnet__Reaction__Element__iterateFunction pf_function,
void *p_user_data

);

The necessary inputs for both are:

• self: A pointer to a Libnucnet Reaction structure, which contains the
collection of reactants and products.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Reaction Element iterateFunction.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

Again, examples in the libnucnet distribution provide further demonstration
of the user of reaction element iterators. Note that the reaction elements are
iterated in the order in which they were stored. The Libnucnet Reac API rou-
tine Libnucnet Reaction Element isNuclide() is convenient for distinguishing
between nuclide and non-nuclide reactants or products while the routine Lib-
nucnet Reaction Element getName() retrieves the reaction element name.

5 Iterating over Zones

Iterating on zones is analogous to iterating on nuclides, reactions, or reaction
elements. The iterate function has the prototype

int
my_iterate_function(
Libnucnet__Zone *p_zone,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

5

• p zone: A pointer to a zone.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
To iterate over the zones, the user then calls Libnucnet iterateZones(),

which has the prototype:

void
Libnucnet__iterateZones(
Libnucnet *self,
(Libnucnet__Zone__iterateFunction) pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet structure, which contains the collection of
zones.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Zone iterateFunction.

• p user data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

As of version 0.4, zones are iterated in the order in which they are stored
internally in the Libnucnet structure. The user does not define this. To iter-
ate in a different order, the user supplies a Libnucnet Zone compare function
and sets it with Libnucnet setZoneCompareFunction(). To restore the default,
the user should call Libnucnet clearZoneCompareFunction(). If the number of
zones is large, the iteration in the default order can be much faster than one that
requires a sorting. For this reason, the default should be used where possible.

6 Iterating over Zone Optional Properties

As of version 0.3, it is possible to assign optional properties to a zone. An
optional property is stored as a string and is identified by another string giving
its name and up to two optional tags. It is likely a user will retrieve the property
by an API routine; nevertheless it is the case that one may want to iterate over
the optional properties of a zone. This is possible. The iterate function to be
applied during such an iteration has the prototype

int
my_iterate_function(

6

const char *s_name,
const char *s_tag1,
const char *s_tag2,
const char *s_value,
void *p_user_data

);

The routine may have any appropriate name. The routine must return 1 to
continue iteration or 0 (zero) to stop. The necessary inputs are:

• s name: A string giving the name of the property.

• s tag1: A string giving the first tag of the property.

• s tag2: A string giving the second tag of the property.

• s value: A string giving the value of the property.

• p user data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

To iterate over the zone’s optional properties, the user then calls Libnuc-
net iterateZones(), which has the prototype:

void
Libnucnet__Zone__iterateOptionalProperties(
Libnucnet__Zone *self,
const char *s_name,
const char *s_tag1,
const char *s_tag2,
Libnucnet__Zone__optional_property_iterate_function pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet Zone.

• s name: The property name. NULL is considered to match on all prop-
erty names. If a name is supplied, the iteration will be over properties
that match that name.

• s tag1: The first tag. NULL is considered to match on all first tags. If
tag1 is supplied, the iteration will be over properties that match that tag.

• s tag2: The second tag. NULL is considered to match on all second tags.
If tag2 is supplied, the iteration will be over properties that match that
tag.

7

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Zone optional property iterate function.

• p user data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

As of version 0.6, properties are iterated in the order in which they are
stored internally. The user does not have control over this ordering. This is a
change from previous versions in which the iteration was alphabetical over the
properties according to their name or tag. The new iteration scheme can be
considerably faster for a large number of properties. Examples in the libnucnet
distribution provide further details.

8

	Iterations
	Iterating over Nuclear Species
	Iterating over Reactions
	Iterating over Reaction Elements
	Iterating over Zones
	Iterating over Zone Optional Properties

