Webnucleo Technical Report: User-Supplied Rate
Functions to libnucnet

Bradley S. Meyer
January 10, 2010

This technical report describes how to supply rate functions to libnucnet.

1 User-Supplied Rate Functions

The standard functions in libnucnet for calculating reaction rates are single
rates (numbers independent of the temperature, density, or any other exter-
nal parameter), rate tables (tables giving the rate vs. temperature, which are
interpolated), or non-smoker fit functions. These standard rate functions are
described in the libnucnet input technical report.

In some cases users may wish to provide their own rate functions that would
be applied during reaction rate calculations. As of version 0.5, this is possible.
To do so, a user writes a Libnucnet__Reaction__rateFunction with the prototype

double

my_rate_function(
Libnucnet__Reaction *p_reaction,
double d_t9,
void *p_user_data

)

In this function, d_t9 is the temperature in 10° K and p_user_data is a pointer
to a user-supplied data structure. The user’s routine then returns the rate
for the reaction. The user must supply a rate function for each different rate
parameterization considered.

2 Setting the Rate Function for a Reaction

Once a rate function has been defined, a user may set that function as the
rate function for a particular reaction. To do so, the user calls the Libnuc-
net__Reac API routine Libnucnet__Reaction__setUserRateFunction(). For ex-
ample, suppose the rate function my_rate_function has been written. The
user then sets this as the rate function for reaction p_reaction by calling Lib-
nucnet__Reaction__setUserRateFunction():

Libnucnet__Reaction__setUserRateFunction(
p_reaction,
"my rate function",
(Libnucnet__Reaction__rateFunction) my_rate_function

)

The string “my rate function” is a key that allows the user to access the rate
function for other purposes, such as updating the extra data.

If the user creates a Libnucnet__Reac, either directly or as part of a Libnuc-
net__Net or Libnucnet structure, it is possible to register the function with the
Libnucnet__Reac structure. To do so, the user calls Libnucnet__Reac_ registerRateFunction().
For example, with the my_rate_function above, one would call

Libnucnet__Reac__registerRateFunction(
p_my_reactions,
"my rate function",
(Libnucnet__Reaction__rateFunction) my_rate_function

)

to register the function with the reaction collection Libnucnet__Reac *p_my _reactions.
The user then calls

Libnucnet__Reac__setUserRateFunctions(p_my_reactions);

to set the function for each reaction according to the appropriate key, assum-
ing the key has been set for each reaction. This is done with the Libnuc-
net__Reaction__setUserRateFunction(), as described above, or, more likely, via
the key attribute to the user_rate tag in the reaction data xml parsed to create
the reaction collection structure. It should be noted that the API function Lib-
nucnet__Net__computeRates() calls Libnucnet__Reac__setUserRateFunctions() it-
self, as needed, so the user only needs to call this if he or she computes the rates
for a reaction directly.

3 Rate Data

If a reaction has a user-supplied rate function, the user can set the data for it
by the Libnucnet__Reaction__updateUserRateFunctionProperty() API routine.
Such data are typically reaction-rate fit parameters. They are properties, which
are strings identified by a name and up to two optional tags. The user may
do this directly or may set the data in the input xml file, as described in the
Webnucleo technical report on input xml to libnucnet.

Once the data for a reaction are set, they may be retrieved via the Libnuc-
net__Reaction__getUserRateFunctionProperty() routine. Here the user supplies
the reaction pointer and the strings for the name of the property and the tags,
if present. The property is returned as a string. The properties may also be ac-
cessed by the API routine Libnucnet__Reaction__iterateUserRateFunctionProperty ().
Here the user supplies a function with the prototype

void

my_iterate_function(
const char *s_name,
const char *s_tagl,
const char *s_tag2,
const char *s_value,
void *p_data

)

Once this function is defined, the user then iterates over the properties for the
rate function for the reaction by calling, for example,

Libnucnet__Reaction__iterateUserRateFunctionProperties(
p_reaction,
s_name,
s_tagl,
s_tag2,
(Libnucnet__Reaction__user_rate_property_iterate_function)

my_iterate_function,

p_data

)3

The iteration is over all properties that match s_name, s_tagl, and s_tag2. If
any of these is NULL, the comparison is a match; thus, if all three are NULL,
the routine will iterate over all properties of the rate function for the reaction.
Finally, the user may remove a property for a user rate function by calling
Libnucnet__Reaction__removeUserRateFunctionProperty().

4 Extra Data

A reaction rate is typically computed from fit data and from data character-
izing the physical conditions present at any point in the calculation. The for-
mer are what we have called “rate data”. These are data that apply to a
particular reaction. The latter are extra, or “user”, data that might corre-
spond to the density at a particular point in the calculation. These user data
are those supplied to the user’s rate function, that is, the data pointed to by
p-user_data, as described in §I}] To set these data, the user calls Libnuc-
net__Reac__updateDataForUserRateFunction(), which has the syntax:

void
Libnucnet__Reac__updateDataForUserRateFunction (
Libnucnet__Reac *self,
const char *s_function_key,
void *p_data

)

For example, to pass the density (stored as d_density) to a user rate func-
tion registered with the key “my rate function” in the reaction collection
p_my _reactions, one would call

Libnucnet__Reac__updateDataForUserRateFunction(
p_my_reactions,

"my rate function",

&d_density

)3

Once this is done, any reaction rate computed from the function with key “my
rate function” would be computed from the rate data for the particular reaction
and the current temperature Ty and the density d_density set in the function
above.

	User-Supplied Rate Functions
	Setting the Rate Function for a Reaction
	Rate Data
	Extra Data

