
Webnucleo Technical Report: libnucnet Iterators

Bradley S. Meyer

July 21, 2008

This technical report describes how to iterate over species, reactions, or zones
with libnucnet and how to apply functions during the iterations.

1 Iterations

Species, reactions, and zones are stored in hashes and lists in libnucnet. As
of version 0.2 of libnucnet, a user loops over them by calling an iterator and
supplying an iterate function to apply during the iteration.

2 Iterating over Nuclear Species

To iterate over the species in a collection of species stored in a Libnucnet Nuc
structure, the user first writes a routine to apply to each species during the
iteration. The prototype is

int
my_iterate_function(
Libnucnet__Species *p_species,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p species: A pointer to a species in the collection.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
The user then calls the function to apply with the Libnucnet Nuc API

routine Libnucnet Nuc iterateSpecies() routine, which has the prototype

void
Libnucnet__Nuc__iterateSpecies(
Libnucnet__Nuc *self,

1

Libnucnet__Species__iterateFunction pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet Nuc structure, which contains the collec-
tion of nuclear species.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Species iterateFunction.

• p my data: A pointer to a user-define data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

For example, suppose we want to count the number of species with Z ≥ 10
in the Libnucnet Nuc structure pointed to by p my nuclei and print out their
name. We first write an iterate function, which we will call my counter and printer:

int
my_counter_and_printer(
Libnucnet__Species *p_species,
int *p_count

)
{

if(!p_species || !p_count)
{
fprintf(stderr, "Problem with species or user data.\n");
return 0;

}

if(Libnucnet__Species__getZ(p_species) >= 10)
{
printf(
"Species number %d is %s\n",
*p_count++,
Libnucnet__Species__getName(p_species)

);
}

return 1;

}

Then to apply this routine, the user calls it from his or her program:

2

i_count = 0;
Libnucnet__Nuc__iterateSpecies(
p_my_nuclei,
(Libnucnet__Species__iterateFunction) my_counter_and_printer,
&i_count

);

In this example, the code initializes i count to zero and then iterates over
the species included in p my nuclei and applies my counter and printer to each
species. Note that the species are iterated in the order in which they were stored
[or were previously sorted, if the user previously called Libnucnet Nuc sortSpecies()].
Examples in the libnucnet distribution provide further details and examples on
how to write, apply, compile, and link iterators.

3 Iterating over Reactions

To iterate over reactions in a reaction collection, the user supplies a routine to
apply to a reaction iteration. The prototype is

int
my_reaction_iterate_function(
Libnucnet__Reaction *p_reaction,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p reaction: A pointer to a reaction.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
The user then calls the function to apply with the Libnucnet Reac API

routine Libnucnet Reac iterateReactions() routine, which has the prototype

void
Libnucnet__Reac__iterateReactions(
Libnucnet__Reac *self,
Libnucnet__Reaction__iterateFunction pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet Reac structure, which contains the collec-
tion of reactions.

3

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Reaction iterateFunction.

• p my data: A pointer to a user-define data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

Again, examples in the libnucnet distribution provide further demonstra-
tion of the user of reaction iterators. Note that the reactions are iterated in
alphabetical order according to the reaction string.

4 Iterating over Zones

Iterating on zones is analogous to iterating on nuclides or reactions. The iterate
function has the prototype

int
my_iterate_function(
Libnucnet__Zone *p_zone,
void *p_my_data

);

The routine may have any appropriate name. The necessary inputs are:

• p zone: A pointer to a zone.

• p my data: A pointer to a user-defined data structure containing extra
data to be passed to the user’s iterate function.

The routine must return 1 to continue iteration or 0 (zero) to stop.
To iterate over the zones, the user then calls Libnucnet iterateZones(),

which has the prototype:

void
Libnucnet__iterateZones(
Libnucnet *self,
(Libnucnet__Zone__iterateFunction) pf_function,
void *p_user_data

);

The necessary inputs are:

• self: A pointer to a Libnucnet structure, which contains the collection of
zones.

• pf function: The name of the user’s function to be applied during the it-
eration. Typically, this needs to be cast as a Libnucnet Zone iterateFunction.

4

• p my data: A pointer to a user-define data structure containing extra
data to be passed to the user’s iterate function. If there are no extra data,
this should be NULL.

Zones are iterated in alphabetical order by their labels.. Examples in the
libnucnet provide further details.

5

	Iterations
	Iterating over Nuclear Species
	Iterating over Reactions
	Iterating over Zones

